Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis

نویسندگان

  • Masaaki Kitano
  • Shinji Kanbara
  • Yasunori Inoue
  • Navaratnarajah Kuganathan
  • Peter V. Sushko
  • Toshiharu Yokoyama
  • Michikazu Hara
  • Hideo Hosono
چکیده

Novel approaches to efficient ammonia synthesis at an ambient pressure are actively sought out so as to reduce the cost of ammonia production and to allow for compact production facilities. It is accepted that the key is the development of a high-performance catalyst that significantly enhances dissociation of the nitrogen-nitrogen triple bond, which is generally considered a rate-determining step. Here we examine kinetics of nitrogen and hydrogen isotope exchange and hydrogen adsorption/desorption reactions for a recently discovered efficient catalyst for ammonia synthesis--ruthenium-loaded 12CaO·7Al2O3 electride (Ru/C12A7:e(-))--and find that the rate controlling step of ammonia synthesis over Ru/C12A7:e(-) is not dissociation of the nitrogen-nitrogen triple bond but the subsequent formation of N-Hn species. A mechanism of ammonia synthesis involving reversible storage and release of hydrogen atoms on the Ru/C12A7:e(-) surface is proposed on the basis of observed hydrogen absorption/desorption kinetics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Characterization of Ru/Al2O3 Nanocatalyst for Ammonia Synthesis

Ru/Al2O3 catalysts were prepared by conventional incipient wetness impregnation as well as colloid deposition of RuCl3 precursor via in situ reduction with ethylene glycol (polyol) method on alumina support. The samples were characterized by TEM, XRD and TPR techniques. The catalytic performance tests were carried out in a fixed-bed micro-reactor under diffe...

متن کامل

Ammonia synthesis from first-principles calculations.

The rate of ammonia synthesis over a nanoparticle ruthenium catalyst can be calculated directly on the basis of a quantum chemical treatment of the problem using density functional theory. We compared the results to measured rates over a ruthenium catalyst supported on magnesium aluminum spinel. When the size distribution of ruthenium particles measured by transmission electron microscopy was u...

متن کامل

Preparation and performance analysis of γ-Al2O3 supported Cu-Ru bimetallic catalysts for the selective Wet Air Oxidation of Aqueous Ammonia to Nitrogen.

Series of Copper Ruthenium (Cu-Ru) bimetallic catalysts supported on γ-Al2O3 with different metal loading are prepared and investigated for catalytic wet air oxidation of ammonia to nitrogen. The ammonia decomposition activity was studied at three different temperatures i.e. 150oC, 200oC, and 230 oC and it is found that catalytic activity increases with the increase in temperature along with th...

متن کامل

Towards the design of novel boron- and nitrogen-substituted ammonia-borane and bifunctional arene ruthenium catalysts for hydrogen storage

Electronic-structure density functional theory calculations have been performed to construct the potential energy surface for H2 release from ammonia-borane, with a novel bifunctional cationic ruthenium catalyst based on the sterically bulky β-diketiminato ligand (Schreiber et al., ACS Catal. 2012, 2, 2505). The focus is on identifying both a suitable substitution pattern for ammonia-borane opt...

متن کامل

A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis.

Ammonia is a crucial chemical feedstock for fertilizer production and is a potential energy carrier. However, the current method of synthesizing ammonia, the Haber-Bosch process, consumes a great deal of energy. To reduce energy consumption, a process and a substance that can catalyze ammonia synthesis under mild conditions (low temperature and low pressure) are strongly needed. Here we show th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015